
jupyterlab-discovery Documentation
Release 5.1.3

Vidar Tonaas Fauske

Nov 07, 2018

Installation and usage

1 Quickstart 3

2 Contents 5
2.1 Installation . 5
2.2 Usage . 5
2.3 For Extension Authors . 10
2.4 Developer install . 12

i

ii

jupyterlab-discovery Documentation, Release 5.1.3

Version 5.1.3

Source code Github page

jupyterlab-discovery is a JupyterLab extension for discovering and managing other JupyterLab extensions. The
extension adds a side-bar component to JupyterLab, that allows the user to:

• View the currently installed extensions and their status.

• Search and discover other extensions published to the npm registry.

• Install, uninstall, enable, disable and update extensions.

Fig. 1: Figure: Base view of the extension sidebar.

Installation and usage 1

http://github.com/vidartf/jupyterlab_discovery
http://jupyterlab.readthedocs.io

jupyterlab-discovery Documentation, Release 5.1.3

2 Installation and usage

CHAPTER 1

Quickstart

To install the extension, run the following command on the JupyterLab server, e.g. from the JupyterLab terminal:

pip install jupyterlab-discovery

This will install both the front-end extension, as well as the required server extension. For torubleshooting and details,
see the Installation section.

3

http://jupyterlab.readthedocs.io/en/stable/user/terminal.html

jupyterlab-discovery Documentation, Release 5.1.3

4 Chapter 1. Quickstart

CHAPTER 2

Contents

2.1 Installation

There are two parts to the jupyterlab-discovery extension:

• A JupyterLab extension for the user interface.

• A jupyter notebook server extension for doing the management of the extension on the server.

Installing the Python package jupyterlab-discovery is the first step. It should be installed from the environ-
ment in which you normally run the jupyter lab command. From within JupyterLab itself, you can gain access
to this environment by opening a terminal. The command to install the package is:

pip install jupyterlab-discovery

If you are on Jupyter Notebook version 5.3 or greater, that package and a restart of the notebook server should normally
be sufficient to start using the extension. With older versions of the notebook package, you will also have to run the
following commands:

jupyter serverextension enable [--sys-prefix | --user | --system] jupyterlab_discovery
jupyter labextension install [--sys-prefix | --user | --system] --py jupyterlab_
→˓discovery
jupyter labextension enable [--sys-prefix | --user | --system] --py jupyterlab_
→˓discovery

where the flags [--sys-prefix | --user | --system] are as specified here.

2.2 Usage

When starting JupyterLab, the extension will query the server about which extensions are installed, and their status.
Once this information has been obtained, the base view of the extension panel will look something like this:

In this view, you can see the installed extensions, and uninstall or disable extensions. The status of extensions can also
be seen by colored borders on the left-hand side of each entry:

5

http://jupyterlab.readthedocs.io/en/stable/user/terminal.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html#installing-and-enabling-extensions

jupyterlab-discovery Documentation, Release 5.1.3

Fig. 1: Figure: Base view of the extension sidebar.

• a red border indicates an error with the extension, typically that the installed version is incompatible with the
current version on JupyterLab.

• a yellow/orange border indicates that changes have been made to the extension, and that a rebuild of JupyterLab
is needed.

2.2.1 Searching

You can search for extensions on the NPM registry by using the search bar on the top of the extension panel. Simply
typing a space will allow you to see all available extensions.

Note: If you are an extension author, see the section for extension authors for instructions on how to make your
extension discoverable.

2.2.2 Installing an extension

Once you have found an extension you want to install, simply click its ‘Install’ button.

Danger: Installing an extension allows it to execute arbitrary code on the server, kernel, and in the client’s
browser. You should therefore avoid installing extensions you do not trust, and watch out for any extensions trying
to mascerade as a trusted extension.

6 Chapter 2. Contents

https://docs.npmjs.com/misc/registry

jupyterlab-discovery Documentation, Release 5.1.3

Fig. 2: Figure: The extension state indicators.

Fig. 3: Figure: An empty search (single space) will list all available extensions.

2.2. Usage 7

jupyterlab-discovery Documentation, Release 5.1.3

Fig. 4: Figure: By entering text in the search bar, the search is limited.

Fig. 5: Figure: The install button.

2.2.3 Rebuilding

A while after starting the install of an extension, a drop-down should appear under the search bar indicating that the
extension has been downloaded, but that a rebuild is needed to complete the installation.

To trigger a rebuild, click the ‘Rebuild’ button. This will start the rebuild in the background. Once the rebuild
completes, a dialog will pop up, indicating that a reload of the page is needed in order to load the latest build into the
browser.

Instead of rebuilding immediately, you can choose to postpone the rebuild to a more appropriate time by clicking the
‘Ignore’ button on the drop-down. When you are ready, reload the page (or open a new tab to the same server) to
trigger a new build check.

2.2.4 Companion packages

During installation of an extension, Discovery will inspect the package metadata for any instructions on companion
packages. Companion packages can be:

• Notebook server extensions (or any other packages that need to be installed on the Notebook server).

• Kernel packages. An example of companion packages for the kernel are Jupyter Widget packages, like the
ipywidgets Python package for the @jupyter-widgets/jupyterlab-manager package.

If Discovery finds instructions for companion packages, it will prompt you about what to do.

The available actions are:

Install Extension Only: Only install the JupyterLab extension, ignoring any companion packages.

8 Chapter 2. Contents

https://ipywidgets.readthedocs.io
https://www.npmjs.com/package/@jupyter-widgets/jupyterlab-manager

jupyterlab-discovery Documentation, Release 5.1.3

Fig. 6: Figure: The rebuild indicator.

Fig. 7: Figure: The companion package information dialog.

2.2. Usage 9

jupyterlab-discovery Documentation, Release 5.1.3

Install Companions / Install in Kernel / Install Server Extension: The text of this button depends on which com-
panion package types the metadata indicates are available. In all cases, it will show another dialog asking for
more input on what to install, and how. After that, it will try to install the packages into the kernel and/or
Notebook server.

Cancel: Do nothing.

Fig. 8: Figure: The companion package install dialog. This example package includes both an server extension
and a kernel package for Python. The drop-downs select how to install the packages. The available options are an
intersection between what Discovery supports and what the package metadata indicates as valid options.

Warning: The option to install companion packages is still experimental, and while it works for the most common
setups, it makes no guarantees. Use at your own risk.

2.3 For Extension Authors

If you have developed an extension for JupyterLab, please ensure that your extension is discoverable by jupyterlab-
discovery by adding the following keyword to your package.json:

"keywords": [
"jupyterlab-extension",
... any other keywords you have

]

that is, ‘jupyterlab-extension’ as one keyword. This allows jupyterlab-discovery to make a clear distinction of actual
extensions for jupyterlab.

10 Chapter 2. Contents

https://github.com/jupyterlab/jupyterlab/issues/3841

jupyterlab-discovery Documentation, Release 5.1.3

Danger: Installing an extension allows for arbitrary code execution on the server, kernel, and in the client’s
browser. You should therefore take steps to protect against malicious changes to your extension’s code. This
includes ensuring strong authentication for your npm account.

2.3.1 Companion Packages

If your package depends on the presence of one or more packages in the kernel, or a notebook server extension, you
can indicate this to jupyterlab-discovery by adding metadata to your package.json file. The full options available are:

"jupyterlab": {
"discovery": {
"kernel": [

{
"kernel_spec": {
"language": "<regexp for matching kernel language>",
"display_name": "<regexp for matching kernel display name>" // optional

},
"base": {
"name": "<the name of the kernel package>"

},
"overrides": { // optional
"<manager name, e.g. 'pip'>": {

"name": "<name of kernel package on pip, if it differs from base name>"
}

},
"managers": [// list of package managers that have your kernel package

"pip",
"conda"

]
}

],
"server": {

"base": {
"name": "<the name of the server extension package>"

},
"overrides": { // optional

"<manager name, e.g. 'pip'>": {
"name": "<name of server extension package on pip, if it differs from base

→˓name>"
}

},
"managers": [// list of package managers that have your server extension

→˓package
"pip",
"conda"

]
}

}
}

A typical setup for e.g. a jupyter-widget based package will then be:

"keywords": [
"jupyterlab-extension",
"jupyter",

(continues on next page)

2.3. For Extension Authors 11

jupyterlab-discovery Documentation, Release 5.1.3

(continued from previous page)

"widgets",
"jupyterlab"

],
"jupyterlab": {

"extension": true,
"discovery": {
"kernel": [

{
"kernel_spec": {
"language": "^python",

},
"base": {
"name": "myipywidgetspackage"

},
"managers": [

"pip",
"conda"

]
}

]
}

}

Currently supported package managers are:

• pip

• conda

2.4 Developer install

To install a developer version of jupyterlab-discovery, you will first need to clone the repository:

git clone https://github.com/vidartf/jupyterlab_discovery.git
cd jupyterlab_discovery

Next, install it with a develop install using pip:

pip install -e .

Enable the server extension with the appropriate flag:

jupyter serverextension enable [--sys-prefix | --user | --system] jupyterlab_discovery

Finally, install the labextension locally:

jupyter labextension install .

This will cause lab to check for changes to jupyterlab-discovery on reload, and will rebuild the extension on lab builds.
It will also watch the extension build output if you run the server with the --watch flag (picks up the output from
npm run build in the extension directory). However, running the server in watch mode is not generally conductive
to testing the operation of jupyterlab-discovery, as it prevents lab from checking for added extensions (at least at the
time of writing).

12 Chapter 2. Contents

https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html#Installing-and-enabling-extensions

	Quickstart
	Contents
	Installation
	Usage
	For Extension Authors
	Developer install

